MOL #28720

Table 1. Abilities of test compounds to displace (\pm)-[125 I]DOI and activate PI hydrolysis at rat 5-HT $_{2A}$ receptors.

Data are represented as the mean and (SEM) from non-linear regression fits of a single binding site model for K₁ values and normalize variable slope sigmoidal dosage-response curves for estimates of EC50 and intrinsic activity. All data are from at least three independent experiments. A typical experiment would show 10-20 fold stimulation by 5-HT over basal for PI hydrolysis assays.

Davis	K,	r5-HT _{2A} R I	Pl Hydrolysis
Drug	r5-HT _{2A} (nM) (±)-[¹²⁵ I]DOI	EC50 (nM)	Intrinsic Activity (% 5-HT)
25H	227 (39)	12877 (1930)	82(8)
25H-NMe	1286 (64)		
25H-NPr	734 (30)		-
25H-NB	17.5 (1.9)		
25H-NBOMe	1.19 (0.17)	81.2 (3.8)	81 (0.4)
25H-NBOH	2.76 (0.40)	141 (21)	66 (2)
24	202 (19)	4034 (260)	67 (8)
24-NB	28.5 (2.9)		
24-NBOMe	0.68 (0.12)	51.0 (6.7)	72(1)
24-NBOH	0.67 (0.01)	74.0 (6.7)	82(4)
DOI	0.58 (0.06)	19.2 (2.6)	77 (3)
DOI-NBOMe	1.08 (0.21)	36.1 (2.7)	43 (3)
251	0.62 (0.08)	19.0 (2.6)	59 (4)
25I-NB	0.31 (0.03)	12.0 (0.7)	37 (2)
25I-NNap	3.74 (0.52)	> ! μM	25 @ 10 μΜ
25I-NBOMe	0.087 (0.010)	2.50 (0.55)	78 (6)
25I-NBOH	0.12 (0.02)	6.34 (0.18)	71 (2)
25I-NBF	0.28 (0.04)	23.2 (1.2)	32 (3)
25I-NBMD	0.19 (0.02)	8.2 (1.6)	68 (7)

MOL #28720

Table 2. Abilities of test compounds to displace (\pm)-[^{125}I]DOI or [^{3}H]ketanserin at wild type and mutant h5-HT_{2A} receptors.

Data are represented as the mean and (SEM) in nM of K_i values from non-linear regression fits of a single binding site model from at least three independent experiments. $\Delta\Delta G^{\circ}$ values are calculated from K_i values at 25°C, ** indicates p<0.01 for values of ΔpK_i from unpaired two-tailed Student T-tests between mutant and wild type receptors tested with the same radioligand.

D	,	(±)-[¹²⁵ 1]DO1			[³ H]Ketanserin	
Drug ·	h5-HT _{2A} K _i (nM)	h5-HT _{2A} /F339L K _i (nM)	ΔΔG° (kcal/mol)	h5-HT _{2A} K ₄ (nM)	h5-HT _{2A} /F340L K ₁ (nM)	ΔΔG° (kcal/mol)
5-HT	4.84 (0.2)	59.6 (10.0)**	1.5	77.6 (13.8)	192725 (36305)**	4.6
d-LSD	0.40 (0.02)	0.60 (0.12)	0.2	0.81 (0.16)	13.01 (1.09)**	1.6
psilocin	11.8 (1.2)	28.6 (4.3) **	0.5	22.8 (4.0)	3659 (243)**	3.0
5-MeO- DMT	7.54 (1.06)	129 (15)**	1.7	49.2 (3.2)	23726 (4726)	3.7
mescaline	1499 (245)	4488 (608)	0.6	14640 (2447)	62425 (10485)**	0.9
25H	377 (67)	5786 (734)**	1.6	1999 (311)	16001 (3163)**	1.2
25H-NMe	1907 (254)	8719 (671)	0.9	5934 (92)	43918 (2271)**	1.2
25H-NPr	1295 (151)	7863 (769) **	1.1	3597 (642)	9815 (943) **	0.6
25H-NB	68.1 (10.6)	2722 (470)**	2.2	184 (33)	6698 (1031)**	2.1
C 25H- NBOMe	2.83 (0.31)	1435 (192)**	3.5	11.0 (0.5)	689 (107) **	2.5
< 25H-NBOH	3.73 (0.45)	2642 (455)**	3.9	11.6 (1.7)	277 (40) **	1.9
24	298 (29)	1013 (190) **	0.7	999 (182)	8391 (1200)**	1.3
24-NB	26.6 (2.7)	1768 (339) **	2.5	71.9 (3.0)	3316 (356)"	2.3
x 24-NBOMe	1.71 (0.34)	252 (49) **	3.0	5.24 (1.01)	703 (14)**	2.9
x 24-NBOH	1.51 (0.20)	306 (57) **	3.1	2.83 (0.36)	292 (14) **	2.7
×25I	0.73 (0.06)	2.63 (0.32)	0.8	4.52 (0.30)	28.9 (4.8)**	1.1
≭ 25I-NB	0.25 (0.05)	3.1 (0.1)	1.3	0.28 (0.02)	27.0 (1.8) **	2.7
25I-NNap	4.83 (0.55)	157 (31) **	2.1	6.68 (1.02)	268 (268) **	2.1
X25I-NBOMe	0.044 (0.006)	2.08 (0.35)**	2.3	0.15 (0.03)	4.3 (0.76) **	2.1
×25I-NBOH	0.061 (0.012)	1.84 (0.16)**	2.0	0,068 (0.012)	1.58 (0.17)	1.9
x251-NBF	0.26 (0.05)	15.2 (1.7)	2.4		37.9 (1.3)	3.1
₺ 251-NBMD	0.049 (0.008)	0.29 (0.03)	1.1	0.21 (0.03)	0.94 (0.17)**	0.9

31

Data are represented as the mean and (SEM) of computer-derived estimates of EC50 and Intrinsic Activity values from at least three independent experiments. A typical experiment would show 4-10 fold stimulation by 5-HT over basal. ** indicates p<0.01 values for ApEC50 and Alnt. Act. from two-way ANOVA tests with Bonferroni post-tests. Table 3. Ability of compounds to activate PI hydrolysis at wild type and mutant h5-HT2A receptors.

	h5-HT _{2A}	ΙΤ _{2Α}	h5-HT _{2A} /F339L	339L	h5-HT _{2A} /F340L	340L
Drug	ECS0 PI	Intrinsic	EC50 PI	Intrinsic	EC50 PI	Intrinsic
G	Hydrolysis	Activity	Hydrolysis	Activity	Hydrolysis	Activity
	(nM)	(% 5-HT)	(nM)	(% 5-HT)	(nM)	(% 5-HT)
5-HT	5.17 (0.97)	100	92.4 (10.5)**	100	9840 (458)	100
d-LSD	0.22 (0.04)	84 (3)	1.36 (0.23)**	55 (5)**	15.7 (2.9)	20 (5)
psilocin	7.29 (0.72)	105 (9)	129 (18)	44 (8)	4529 (813)	(1)6
S-McO-DMT	4.33 (0.78)	98 (4)	416 (71)	74 (5)**	5255 (969)	15 (4) **
mescaline	1117 (223)	83 (5)	11333 (991)**	82 (7)	78795 (3869)	30 (1) 😷
2511	1021 (14)	96 (10)	10353 (1652)	78 (1)	141033 (39537)**	12 (4)
x 25H-NBOMe	15.3 (3.7)	(4) 88	3407 (390)	27 (4) **	1341 (53)	43 (5)
25H-NBO11	23.5 (1.8)	100 (6)	11267 (758)**	32 (6)"	2156 (503)	28 (3)
24	832 (200)	83 (5)	4077 (579)**	66 (4)	109311 (37671)**	17(1)**
×24-NBOMc	4.00 (0.80)	(9) 68	1436 (281)	55 (5)	2029 (199)	(8) 99
24-NBOH	5.42 (0.66)	84 (4)	5623 (29) "	49 (8)	696 (139)	31 (3)
251	2.54 (0.18)	82 (3)	22.8 (2.7)	72 (5)	99.5 (5.3)**	38 (2)**
25I-NB	1.96 (0.12)	66 (2)	1093 (353)	14 (2) "	263 (40) 🔭	82 (1)
251-NBOMe	0.44 (0.07)	81 (4)	28.0 (5.2)	51 (4)	26.8 (4.2)	84 (7)
251-NBOH	0.19 (0.03)	86 (5)	42.3 (6.5)	45 (6) 🔭	14.6 (2.9)**	82 (7)
251-NBF	1.55 (0.21)	87 (11)	150 (25) **	8(I):	410 (33)**	81 (6)
251-NBMD	1.07 (0.20)	72 (3)	91.0 (30.9)	(1)	145 (25)**	70 (5)

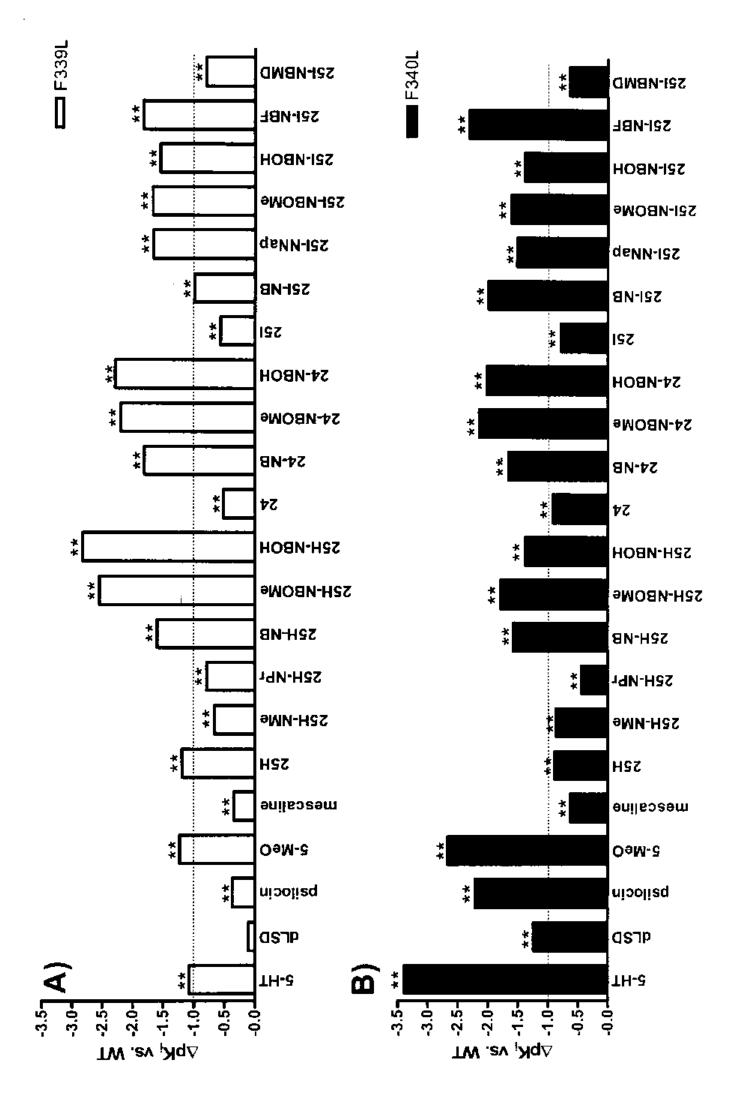
31

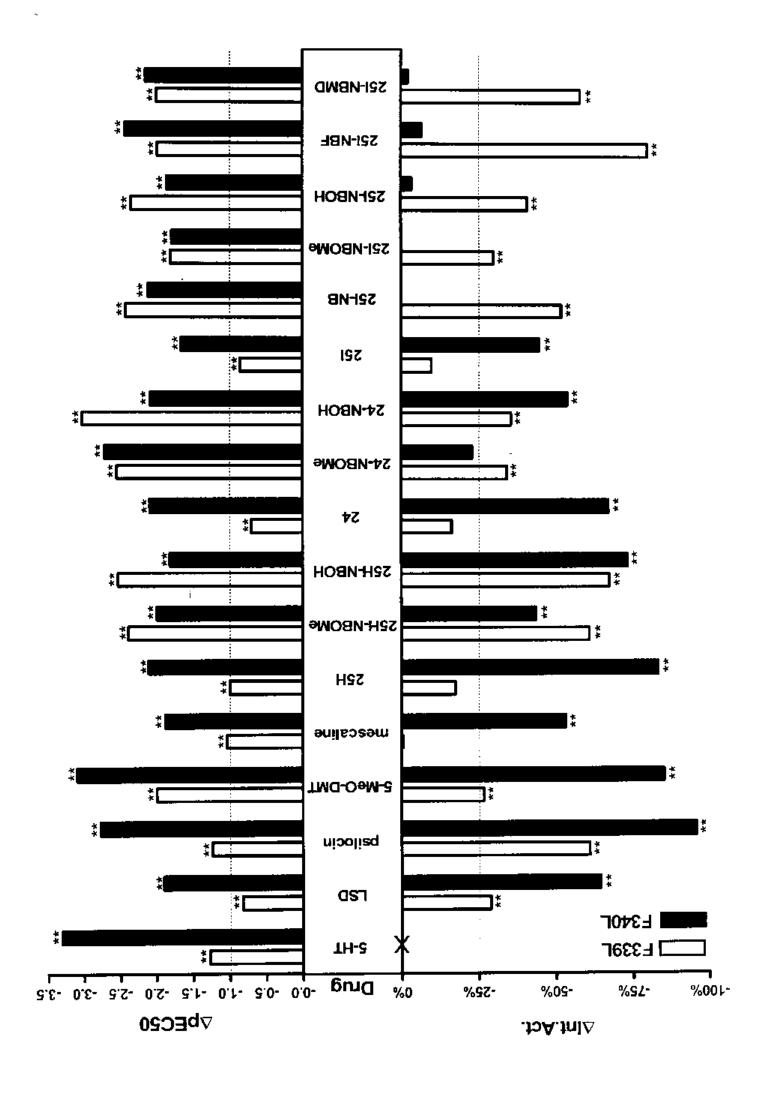
ÓCH₃

CH₃

ÒСН₃

IZ


OCH₃


DOI-NBOMe

X=I, R=H ← X=I, R=OCH₃← X=I, R=OH ←

X=1, R=

R = H R = OCH₃

MOL #28720 2

Running Title: Aromatic interactions of 5-HT_{2A} agonists

Primary Contact

Dr. David E. Nichols
Dept. of Medicinal Chemistry and Molecular Pharmacology
School of Pharmacy and Pharmaceutical Sciences
575 Stadium Mall Drive
Purdue University
West Lafayette, IN 47907-2091

Phone: (765) 494-1461 FAX: (765) 494-6790

Email: drdave@pharmacy.purdue.edu

№ Text Pages: 18

№ Tables: 3 № Figures: 4

№ References: 39

Abstract word count: 240

Introduction word count: 578
Discussion word count: 1497

Abbreviations: 5-HT, 5-hydroxytryptamine, serotonin; dLSD, d-lysergic acid diethylamide; psilocin, 4-hydroxy-N,N-dimethyltryptamine; 5-MeO-DMT, 5-methoxy-N,Ndimethyltryptamine; mescaline, 3,4,5-trimethoxyphenethylamine; DOI, 4-iodo-2,5dimethoxyphenylisopropylamine; DOI-NBOMe, N-(2-methoxybenzyl)-4-iodo-2,5dimethoxyphenylisopropylamine; 25H, 2,5-dimethoxyphenethylamine; 25H-NMe, N-methyl-2,5dimethoxyphenethylamine; 25H-NPr, N-propyl-2,5-dimethoxyphenethylamine; 25H-NB, Nbenzyl-2,5-dimethoxyphenethylamine; 25H-NBOMe, N-(2-methoxybenzyl)-2,5dimethoxyphenethylamine; 25H-NBOH, N-(2-hydroxybenzyl)-2,5-dimethoxyphenethylamine; 24, 2,4-dimethoxyphenethylamine; 24-NB, N-benzyl-2,4-dimethoxyphenethylamine; 24-NBOMe, N-(2-methoxybenzyl)-2,4-dimethoxyphenethylamine; 24-NBOH, N-(2hydroxybenzyl)-2,4-dimethoxyphenethylamine; 251, 2CI, 4-iodo-2,5-dimethoxyphenethylamine; 25I-NB, N-benzyl-4-iodo-2,5-dimethoxyphenethylamine; 25I-NNap, N-methylnapthyl-4-iodo-2,5-dimethoxyphenethylamine; 251-NBOMe, N-(2-methoxybenzyl)-4-iodo-2,5dimethoxyphenethylamine; 25I-NBOH, N-(2-hydroxybenzyl)-4-iodo-2,5dimethoxyphenethylamine; 25I-NBF, N-(2-fluorobenzyl)-4-iodo-2,5-dimethoxyphenethylamine; 251-NBMD, N-(2,3-methylenedioxybenzyl)-4-iodo-2,5-dimethoxyphenethylamine; 8-OH-DPAT, 8-hydroxy-2-(dipropylamino)tetralin; PI, phosphatidylinositide(s); TM, transmembrane.

doi:10.1124 / mol.106.0287; MOL #28720; "Molecular interaction of serotonin 5-HT₂₄ receptor residues Phe339(6.51) and Phe340(6.52) with super-potent N-benzyl phenethylamine agonists".

Lit.2: Molecular Pharmacology Fast Forward. Published on September 25, 2006 as

Michael R. Braden, Jason C. Parrish, John C. Naylor, David E. Nichols, Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical

Sciences, Purdue University, West Lafayette, IN 47907.

s.a.

http://en.wikipedia.org/wiki/25I-NBOMe